网上看到的一篇比较好的方向性的文章
Python学习完基础语法知识后,如何进一步提高?
如果你已经完成了Python基础语法的学习,想要知道接下来如何提高,那么你得先问问自己你要用Python来做什么?目前学习Python后可能的就业方向包括以下几个领域,我把每个领域需要的技术作为了一个简单的关键词摘要。
说明:以下数据参考了主要的招聘门户网站以及职友集。
职位 | 所需技能 | 招聘需求量 |
---|---|---|
Python后端开发工程师 | Python基础 Django / Flask / Tornado / Sanic RESTful / 接口文档撰写 MySQL / Redis / MongoDB / ElasticSearch Linux / Git / Scrum / PyCharm |
大 |
Python爬虫开发工程师 | Python基础 常用标准库和三方库 Scrapy / PySpider Selenium / Appnium Redis / MongoDB / MySQL 前端 / HTTP(S) / 抓包工具 |
较少 |
Python量化交易开发工程师 | Python基础 数据结构 / 算法 / 设计模式 NoSQL(KV数据库) 金融学(两融、期权、期货、股票) / 数字货币 |
较大(一线城市) |
Python数据分析工程师 / Python机器学习工程师 |
统计学专业 / 数学专业 / 计算机专业 Python基础 / 算法设计 SQL / NoSQL / Hive / Hadoop / Spark NumPy / Scikit-Learn / Pandas / Seaborn PyTorch / Tensorflow / OpenCV |
较大(一线城市) |
Python自动化测试工程师 | Python基础 / 单元测试 / 软件测试基础 Linux / Shell / JIRA / 禅道 / Jenkins / CI / CD Selenium / Robot Framework / Appnium ab / sysbench / JMeter / LoadRunner / QTP |
大 |
Python自动化运维工程师 | Python基础 / Linux / Shell Fabric / Ansible / Playbook Zabbix / Saltstack / Puppet Docker / paramiko |
较大(一线城市) |
Python云平台开发工程师 | Python基础 OpenStack / CloudStack Ovirt / KVM Docker / K8S |
较少(一线城市) |
如果弄清了自己将来要做的方向,就可以开始有针对性的学习了,下面给大家一个推荐书籍的清单。
- 入门读物
- 《Python基础教程》(Beginning Python From Novice to Professional)
- 《Python学习手册》(Learning Python)
- 《Python编程》(Programming Python)
- 《Python编程从入门到实践》(Python Crash Course)
- 《Python Cookbook》
- 进阶读物
- 《软件架构 - Python语言实现》(Software Architecture with Python)
- 《流畅的Python》(Fluent Python)
- 《Python设计模式》(Learning Python Design Patterns)
- 《Python高级编程》(Expert Python Programming)
- 《Python性能分析与优化》(Mastering Python High Performance)
- 数据库相关
- 《MySQL必知必会》(MySQL Crash Course)
- 《深入浅出MySQL - 数据库开发、优化与管理维护》
- 《MongoDB权威指南》(MongoDB: The Definitive Guide)
- 《Redis实战》(Redis in Action)
- 《Redis开发与运维》
- Linux / Shell / Docker / 运维
- 《鸟哥的Linux私房菜》
- 《Linux命令行与shell脚本编程大全》(Linux Command Line and Shell Scripting Bible)
- 《Python自动化运维:技术与最佳实践》
- 《第一本Docker书》(The Docker Book)
- 《Docker经典实例》(Docker Cookbook)
- Django / Flask / Tornado
-
《Django基础教程》(Tango with Django)
-
《轻量级Django》(Lightweight Django)
-
《精通Django》(Mastering Django: Core)
-
《Python Web开发:测试驱动方法》(Test-Driven Development with Python)
-
《Two Scoops of Django: Best Practice of Django 1.8》
-
《Flask Web开发:基于Python的Web应用开发实战》(Flask Web Development: Developing Web Applications with Python)
-
《深入理解Flask》(Mastering Flask)
-
《Introduction to Tornado》
-
爬虫开发
-
《用Python写网络爬虫》(Web Scraping with Python)
-
《精通Python爬虫框架Scrapy》(Learning Scrapy)
-
《Python网络数据采集》(Web Scraping with Python)
-
《Python爬虫开发与项目实战》
-
《Python 3网络爬虫开发实战》
-
数据分析
-
《利用Python进行数据分析》(Python for Data Analysis)
- 《Python数据科学手册》(Python Data Science Handbook)
- 《Python金融大数据分析》(Python for Finance)
- 《Python数据可视化编程实战》(Python Data Visualization Cookbook)
-
《Python数据处理》(Data Wrangling with Python)
-
机器学习
-
《Python机器学习基础教程》(Introduction to Machine Learning with Python)
-
《Python机器学习实践指南》(Python Machine Learning Blueprints)
-
《Python机器学习实践:测试驱动的开发方法》(Thoughtful Machine Learning with Python A Test Driven Approach)
- 《Python机器学习经典实例》(Python Machine Learning Cookbook)
-
《TensorFlow:实战Google深度学习框架》
-
其他书籍
-
《Pro Git》
- 《Selenium自动化测试 - 基于Python语言》(Learning Selenium Testing Tools with Python)
- 《Selenium自动化测试之道》
- 《Scrum敏捷软件开发》(Software Development using Scrum)
- 《高效团队开发 - 工具与方法》
当然学习编程,最重要的通过项目实战来提升自己的综合能力,Github上有大量的优质开源项目,其中不乏优质的Python项目。有一个名为“awesome-python-applications”的项目对这些优质的资源进行了归类并提供了传送门,大家可以了解下。除此之外,还要为大家推荐一个名为“Python-100-Days”的项目,上面有大量优质的Python学习资料(包括文档、代码和相关资源)。如果自学能力不是那么强,可以通过网络上免费或者付费的视频课程来学习对应的知识;如果自律性没有那么强,那就只能建议花钱参加培训班了,因为花钱在有人监督的环境下学习对很多人来说确实是一个捷径,但是要记得:“师傅领进门,修行靠各人”。选择自己热爱的东西并全力以赴,不要盲目的跟风学习,这一点算是过来人的忠告吧。记得我自己刚开始进入软件开发这个行业时,有人跟我说过这么一句话,现在也分享出来与诸君共勉:“浮躁的人有两种:只观望而不学习的人,只学习而不坚持的人;浮躁的人都不是高手。”